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SENSITIVITY ANALYSIS
FOR
STATIONARY PROBABILITIES OF A MARKOV CHAIN

by

Peter W. Glynn1
University of Wisconsin

ABSTRACT

This paper considers the problem of evaluating the sensitivity of a
steady-state cost «(8) to underlying uncertainty in a parameter vector 6
governing the probabilistic dynamics of the system under consideration. We
show that the gradient Va(8) plays a fundamental role in the parametric
statistical theory for Markov processes. We then survey nuumerical methods
available for evaluating Va(®) and introduce a new Monte Carlo estimator
for Va(6), which is applicable to Markov processes of substantial

generality.

1Research supported by the United States Army under Contract No.
DAAG29-84-K-0030 and by NSF Grants ECS-840-4809 and DCR-8509668.
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:: 1.  INTRODUCTION

ﬁ Let X = {xn: n > 0} be an irreducible positive recurrent Markov

i chain governed by a transition kernel P(6), where 6 1is a parameter

X: vector taking values in ld. If 7n(8) 1is the stationary measure of

?f: P(8) and £f(6,x) 1is the cost of running the chain while in state x, then
gR} a(0) = ff(e,x) n(06,dx) 1is the long-run average cost of running X under
‘ parameter choice 6. 1In many applications settings, it is of interest to
_}i compute the sensitivity of a to (infinitesimal) changes in the parameter
G; 8. Specifically, it is frequently useful to be able to evaluate Va(®8),
::' the gradient of a(°*) evaluated at 8 ¢ ld. Since it 1is generally

. impossible to analytically evaluate Va(6) (except for simple models), this
- paper will concentrate on numerical methods for determining Va(0).

2 This paper is organized as follows. In Section 2, we introduce an

>

~f important statistical application for these methods. We show that the

" numerical methods discussed here offer the opportunity to do statistical
:7 point, variance, and interval estimation for highly complex functionals of
jf analytically intractable Markov processes. Section 3 is devoted to the

‘i: formal derivation of an expression for Va(®8) and describes, for finite

state Markov chains, a set of linear equations which characterizes Va(9).
. For complicated stochastic processes, the corresponding linear systems are
- too complex to solve via standard numerical methods, and Monte Carlo
:; techniques therefore become relevant. Thus, Section 4 provides a (new)
Monte Carlo estimator for Va(6), which is applicable to Markov chains of
}j substantial generality. Finally, Section 5 offers a brief summary of the
v
3, paper.
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2. STATISTICAL RELEVANCE OF THE GRADIENT

Suppose that the transition kernel P governing the Markov chain X
is determined by a finite family of distributions (Fl’ seey Fn) =
(Fl(yl), coey Fm(ym)), where each Fi(Yi) is a probabiliti distribution
associated with a known parametric family in which Yi ek i 1f
6 = (Yl’ esey Ym), then P can be viewed as a function of 6, namely
P = P(8).

In statistical contexts, the vector 0 ¢ ld (d = dl + eee ¢ dm)
is, in general, unknown. Most of the literature on statistical inference
for Markov processes has concentrated on estimation of the "true" parameter
6* (1.e., estimation of © when the observed chain X is governed by
P(8*)) and on related issues such as production of variance estimates and
confidence intervals. However, in many applications settings, it is of
more practical importance to estimate not ©* but some assoclated steady-

state cost a(6%),

(2.1) EXAMPLE. Let X = {Xn: n > 0} be the Markov chain consisting of
waiting times of consecutive customers in the M/M/1/>~ queue. (See HEYMAN
and SOBEL (1982) for a description.) Arrivals follow an exp(yl) distri-
bution, whereas service times are distributed exp(yz). Suppose that the
long-run customer waiting time a(8) 1s of importance, when 6 = (yl,yz).
The objective is to produce estimates for a(&*), as well as variance and

interval estimates, from observed inter-arrival times esey Y as

Y. >

well as observed service times Y21, seey anz. Note th;i in cert:in set-
tings, the inter-arrival times and service times may have been collected
from two independent sources, so that no waiting times for the system are
available. For example, the queue might correspond to a telephone switch-
ing system being designed, in which historical inter-arrival data exists

and service time data for the proposed switching device is available.
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(2.2) EXAMPLE. Virtually anv general discrete-event stochastic system can
be formulated as a generalized semi-Markov process (GSMP). A GSMP can,
in turn, be viewed as a Markov chain X = {Xn: n > 0}, where X = (Sn,Cn)
records the “"physical state” Sn (e.g., configuration of customers in a
queue) and clock readings Cn (e.g., remaining service times for each of
the customers in the system) at the nth transition of the GSMP. (For
further details, see GLYNN (1983).) GSMP's are characterized probabilis-

tically by certain distributions F ey Fl governing the way clocks are

»
reset (e.g., service times in a queie) and by routing probabilities
pl, cees Py (e.g., the proportion of customers who visit station j after
receiving service at station 1i).

In many applications environments, the distributions Fl’ Fz, cosy l-‘1
and routing probabilities pl, seey P are unknown and must be estimated

via statistical methods. If one models the distributions F eeey F as

1’ b3

belonging to parametric families (i.e., F, = Fi(Yi))’ then the transition

function P governing X can be viewed is P = P(8), where 0 =

(Yl, ooy Yx’ pl, cvny pk). The performance of a stochastic system is
often assessed by considering a long-run average cost a for the system
which, in this context, can be regarded as a function a = a(8) of the
unknown parameter € associated with P. Consequently, an important
statistical objective involves point and interval estimation of a(6%*),
where ©* is the “"true” parameter governing the system.

We will now outline a method for obtaining point and interval
estimates for a(9*), which 1s applicable to very general stochastic
systems. Let 0 = (él(nl), cees éd(nd)) be an estimator for o =
(9:, cesy 93) (n1 is the sample size associated with estimation
of 6;.) Such estimators 6 are frequently available for complex systems.
In particular, one can often appeal to maximum likelihood estimation (MLE)
methods for estimating ©6*. Under very general conditions, 8 will be

asymptotically normal, in the sense that

(2.3) 5 & NCO%, Cn, veey 1))

d
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where N(0%, C(nl, ceesy nd)) is a multiviéfate normal r.v., with mean 6%
and covariance matrix C(nl, ooy nd). ( ® denotes "has approximately
the distribution of".) 1In certain design settings (see Example 2.1), the
data for each of the different components 9: is gathered from indepen-

dent sources. In this case, C(nl, ooy nd) takes the diagonal form

(204) C(nl, s ey nd) = 4 .

If a 1s continuously differentiable in a neighborhood of 6%, then a
Taylor expansion of « around ©€* shows that (2.3) yields

(2.5) a(8) E? N(a(0%*), Va(e*)t C(nl, ceny nd) Va(6*))

where Va(6*) 1is the (column) gradient of a evaluated at 6*, (This is

the so-called "delta method” of statistics.)
Relation (2.5) shows that if n 4

a good point estimator for a(8*), Let C(nl, ooy nd) be an estimator

«es, N, are large, then a(8) is

for C(nl, ey nd) (such variance estimators are commonly available for

MLE point estimates 8). Then, (2.5) proves that

<>

(2.6) z va(d)" C(n s wees my) Va(d)

is an estimator for the variance of a(é) and,

/2 /2

(2.7) [a(8) - 2(6)v /2, a(B) + z(8)w'/?}

«
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eﬁ?f ' is an approximate 106(1-8)% confidence interval for a(©*), where 2z(§)
4" -~
ﬂga is the solution of P{N(0,1) < z(8)} = 1 - 8/2. Thus, provided that a(8)
Jo R
and Va(8) can be evaluated (either analytically or numerically), (2.6)
N and (2.7) provide a solution to the variance and interval estimation
;§:$ problems discussed above.
'Qap In the case that the covariance matrix C(nl, cesy nd) takes the
) form (2.4), vV can be expressed as
,0;"0
,“
:t‘ ]
W - . a
] (2.8) va=17 (a_g’ (8 )2 o'i/ni .
AR i=1 i
.
ix; Relation (2.8) shows that the contribution of uncertainty in 9; to the
[ .’ -~ I3 -~
) variance of a(8) is given by (aa(e)/aei)z oi/ni. This can be used to
W determine which component to additionally sample if the current estimator
fm of a(6*) 1s too "noisy.”
)
N
.:: :
;‘ (2.1) EXAMPLE (continued). Because of the simplicity of the M/M/1/e
- queue, @ can be analytically determined in closed form, namely a(yl,yz) =
jgj YZ(YZ_YI)—I for v, < Y, (= for A 2_12). 1f ;l < ;2, (2.8) reduces
f{, to
!
5 2 2
% v v = 2 o2/n. + 1 &/n ,
] -~ IS 4 l l a ~ A 2 2
e (Yz-—vl) (Yz-vl)
;u.l'
o ~2,22
LK where cl(oz) is a variance estimate for yl(yz) formed from
Y
:::: Yll’ ...’ Yln‘(Yzl' ...’ anz).
A For more complicated systems, such as that described in Example 2.2,
Q;: a(*) cannot be determined analytically, and so one must turn to numerical
A"' algorithms. These algorithms will be described in the remaining sections
1\5. of this paper.
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\&F, 3. A FORMULA FOR THE GRADIENT OF THE STEADY-STATE
‘ t. Let P(O) be the transition function for X under parameter 6, so
ey
f“‘y that P(9,x,A) 1is the corresponding conditional probability that xn+l € A,
:s?' given that Xn = Xx. For an initial distribution u(8), let Pe be the
; N probability measure on the path-space of X associated with P(6), namely
)]
oo
£
Jh = oo
N Pe{x0 € Ajy eeny X € A} f p.(e,dxo) ] P(e,xo,dxl) jp(e,xn_l,dxn) .
A A A
o 0 1 n
ARG
’Q;f If X is Harris recurrent under P(9) (see REVUZ (1984)), then there
L)
e exists a unique probability measure =(6) such that
o
A< -\1 1 n-1
A (3.1) -~ ¥ £(8,X,) > [ £(6,x) n(6,dx) P, a.s.
zﬂt\ n k=0 k 3 6

as n +» o (for a large class of f(8)'s). The measure n(8) 1is stationary

s for P(6), in the sense that

(3.2) n(0,¢) = [ P(8,x,*) n(6,dx) .
S

o
-Sr;:
- A

(S 1is the state space of X.) In fact, n(9) is the unique probability

v
\ Ay

L 4

measure satisfying (3.2). Our goal is to numerically compute a(8) and

>
b

A

Va(8), where a(6) is the steady-state limit

-
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(3.3) a(®) = [ £(8,x) =(6,dx) .
s
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Since (3.2) only determines n(6) up to a multiplicative constant, it

)

&

is necessary to add an additional constraint stating that the total mass

4
St et et
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n(8,S) equals 1. The quantity a(8) 1is then the unique solution of the

~

integral equation system
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é : n(6,*) = [ P(0,x,*) m(0,dx)
'\. S

. (3.4) n(8,S) =1

,‘. «(8) = [ £(8,x) n(6,dx) .
S

hay The system (3.4) is well known and has been extensively studied. If S is
) finite, then P(8) is a finite matrix and (3.4) becomes

s ()" = ()" P(o)

Qe (3.5) n(8)’e = 1

a(8) = =(8)" £(0)

Ly o>
(]

.y 4

- ;".. <
PR
e | .
PP 2P

)

(all vectors are column vectors; e is the vector consisting of 1's).

.
5

As we shall see, a similar system describes the gradient Va(8) of

48

A a. Let us formally suppose that the transition function P(8) can be

g expanded as
Ca

P(6 + hei) = P(9) + hQi(e) + o(h)

[~ th
’f:} where e, is the 1 unit vector in ld. Assume that ﬂ(9+hei) is

[~y formally differentiable at h = 0, so that there exists a signed measure

;) ni(e) such that

o's (3.6) n(6 + he ) = n(8) + hn,(8) + o(h) .

The stationarity equation (3.2) implies that ni(e) must satisfy

(3.7) n,(8,,dx) - [ n,(8,dx) P(6,x,*) = [ Q,(8,x,*) n(8,dx)
1i* 1 S i S i

. Te e W

-
<




(formally differentiate both sides of (3.2)). (The equation (3.7) is
Poisson's equation for the kernel P(6).) These formal calculations can be
made rigorous, even in general state space; such arguments will appear
elsewhere.

In finite state space, the arguments are more straightforward and have
previously appeared in SCHWEITZER (1968), GOLUB and MEYER (1986), and MEYER
and STEWART (1986). We give a very elementary proof in the Appendix to
this paper; our argument uses only elementary Markov chain theory. Note
that in finite state space, (3.7) becomes ni(e)t(I-P(e)) = 11(6)t Qi(e).
This does not uniquely identify ni(e), since ni(e) + &n(8) also
satisfies the equation, for all &. Note that since n(e)‘e =1 for all
8, it follows that ni(e)ce = (0 (see (3.6)). Let II(8) be the matrix in
which all rows are identical to n(8). It is easily verified that since

ni(B)te =0, ni(e)t M(8) = 0. Consequently, ni(e) also satisfies
(3.8) n ()5(1 - (&) + T(8)) = w(&)" Q () .

It is well known (see KEMENY and SNELL (1960), p. 100) that (I-P(©)+I(8))
has an inverse, called the fundamental matrix, which we shall denote F(8).
h

Hence, in finite state space, the 1t component of Va(8) can be

computed as the solution of the system

ﬂi(e)t = n(e)" Qi(e) F(©)
d t ., t
3§I a(8) = =(6) fi(e) + ni(e) £(0)

(3.9)

where fi(e) is the vector in which the jth component 1is af(e,j)/aei.
Consequently, when S 1s finite, the systems of linear equations
(3.5) and (3.9) may be solved numerically to obtain a(6) and Va(8). If
S 1is not finite (or if the number of elements in S 1is large), numerical
methods not dependent on explicit solution of linear equatioﬁs must be

considered. In the next section, we show how Monte Carlo methods can be

used to advantage here.
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5: 4, MONTE CARLO EVALUATION OF STEADY-STATE GRADIENTS
N A critical assumption underlying the analysis of this section is that
. it is possible to generate sample trajectories of X under the measure
p Py For the examples that we have in mind (see particularly Example 2.2),
?{ this assumption is clearly in force.
2 Assuming now that X has distribution Pe, relation (3.1) states
N that
B
$
oy . n-1
- (4.1) = 7 f(6,Xx ) + a(®) P, a.s.
B, n k 6
k=0
Q as n + ®, In other words, rather than solving the integral equation
'? system (3.4), one may numerically approximate a(8) by the sample average
f? appearing on the left-hand side of (4.1). The simplicity of this numerical
procedure, as well as its broad applicability, 1s the source of the power
b of the Monte Carlo method. Our objective here is to obtain a similar Monte
-
. Carlo algorithm for evaluation of the gradient Va(8).
3 Observe that (at least formally) we have
LS
N 0 o]
- (4.2) 35 a(e) | 35— £(8,x) n(8,dx) + [ £(8,x) n, (8,dx) .
. s i S
.
. A Monte Carlo estimator for the first term appearing on the right-hand side
- ~“ (4.,2) is given by the sample mean
-2 n-1
e (4.3) % ) ag £(8,%) .
5 k=0 i
>
L
o
j It remains to obtain an estimator for the second term.
oé
q As in the finite state space context, one expects that the signed
B
kﬁ measure ni(e) will satisfy ni(e,s) = 0. As a consequence, it follows
5{ from (3.7) that ni(e) should satisfy
y
LA
(RS
D
D
N 9
»
¢
)




(4.4) n.(8,*) = [ n.(6,dx) P(8,x,*) + [ n (8,dx) ™8,*)
i S i S i

= [ Q. (8,x,*) n(8,dx) .
S i

Letting II(®) be the operator I(8,x,*) = n(H,*), one can write (4.4)
symbolically as

(4.5) ni(e)(I - P(8)+ T(8)) = n(6) Qi(e) .

(This is the general state space analogue of (3.8).) The formal inverse of

(I-P(8)+M1(6)) 1is given by

@©

1 (P(8) - rI(e))k .
k=0

Because of the stationarity of n(8) and the independence of II(6,x,*)

k k
from x, it follows that (P(8)-1I(8)) = P(8) - M(8), for k > l. Hence,
a formal analysis of (4.5) shows that

-}

n,(6) = n(8) Q(&) + ] w8) Q (0)(pPX(8) - () .
k=1 - i

For the same reason that ni(G,S) = 0, Qi(e,x,S) = 0 and hence
Qi(e)n(e) = 0. Consequently,

@

(4.6) n(O)£(8) = ] w(8) Q(8) PO £(8) .
k=0

Suppose that the measures P(¢,x,dy) are absolutely continuous with

respect to P(9,x,dy) 1n a neighborhood of 6. Then, one expects that

10




1%
B
!:;‘!'s
'l;ﬁ
-$§ . Qi(e,x,dy) has a density with respect to P(9,x,dy), call it qi(e,x,y). A
{:&: typical term on the right-hand side of (4.6) then takes the form
hhe o
o k
Yol [ n(6,dx) [ q,(8,x,y) P(8,x,dy) [ P (8,y,dz) £(8,2)
.9 S S ]
o
b
V) which can be represented probabilistically as an expectation:
¢ L% ~
b2 Egla, (8,X X JE(8,X )]
=
= where Ee(°) is the expectation corresponding to Fe, and 59 is the
-
w::: probability on path-space associated with initial distribution n(6) and
;g transition function P(8). Thus, the second term in (4.2) has the formal
;: . representation
\"‘
ot
4 .r-; ®
e E X
T 4, y 8,x% 9 .
oo (4.7) ) Ee[qi( 0,xl)f( .xk+l)]
(i k=0
o'
S The formula (4.7) is the key to the Monte Carlo analysis.
:;ﬁ Each term in (4.7) can be consistently estimated (under suitable
ﬁf; hypotheses) via

oa

)

-
n-1
A 1
2 o Lo XX X )
Wy j=0
¥y
p‘{'
i when X evolves according to transition function P(8) (regardless of X's
.54 initial distribution). 1In order to estimate the infinite sum, a standard
-
:f. device is to consider an estimator of the form
i
2 - Jzi(n) 1 n-l(\f)-l
ool (4.8) — q. (8,X,,X, ) f(8,X )
g0 k=0 n-2(n) =0 i 373+l J+k+l

"
", l‘p ) B W )
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where the truncation point &(n) 1is keyed to the sample size n 1in such a
way that 2(n) » @ with 2(n)/n + 0. The particular choice of 2(n)
effects a compromise between bias and variance effects in estimating the
infinite sum (4.7).

Since qi(q,x,y) is generally easily computable (for S countable,
qi(e,j,k) = (ap(e,j,k)/aej) . p(e,j,k)-l), (4.7) provides a Monte Carlo
solution to estimating the appropriate gradient.

It turns out that (4.6) is closely related to a formula which one
obtains when one uses likelihood ratio change-of-measure ideas to evaluate
gradients. These connections will be explored more fully in a future

paper.
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5. SUMMARY

We have shown that the gradient Va(8) of steady-state quantity «
plays a critical role in the variance and interval estimation theory for
steady-state estimators a(8) of complex stochastic systems. In some
sense, the large-sample variance and interval estimation theory 1is fully
solved given that one can evaluate a(é) and Va(é). Numerical methods !
for dealing with a(é) when the system is Markov are, of course, well
known. However, numerical algorithms for evaluating Va(8) are a recent
development. We have therefore provided a self-contained exposition of the
relevant theory, and discuss both Monte Carlo (see (4.3) and (4.8)) and

non-Monte Carlo (see (3.9)) approaches to solving the problem.

APPENDIX

Let P(*) be a family of n x n stochastic matrices which are: |

(i) 1irreducible in a neighborhood of 6

(1ii) differentiable at 8.
Under (1), P(*) has a unique stationary distribution =n(e¢) 1in a
neighborhood of 8. Our goal is to rigorously verify the first equation in
(3.9).

Given the existence of the inverse matrix F(8) = (I-P(6)+H(6))-1,
(3.9) follows immediately once the differentiability of n(8) is
established. Note that for h sufficiently small,

n(6+he ) - m(6) = n(6+hei)t[P(9) + hQ,(8) + o(h)] - (8" p(9)

SO
[n(9+he1) - ﬂ(e)]t(I-P(G)) = hn(e+hei)t Qi(e) + o(h)

(note that o(h)n(6+hei) = o(h) since all terms in n(9+hei) are uniform-
ly (in h) bounded by 1). Since II(8) has identical rows and n(6+hei)
is stochastic for h > 0, it follows that [n(6+he1)-n(6)]ﬂ(9) = 0. Hence,

------
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(A1) [n(e+he,) - 7(0)]° - hn(6+hei)t Q,(8) F(8) + o(h) .

Again, since n(6+hei) is uniformly bounded in h, it is evident from (Al)
that n(6+hei) is continuous at h = 0. Thus, (Al) implies that

[x(o+he ) - w(0)]° = hn(e)* Q,(8) F(8) + o(h)

i.e., ni(e)t - (o)t Q(8) F(8) ,

which is the required result.
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